An Overview of Global and Regional Sea-Level Rise Projections

Jayantha Obeysekera, Ph.D. ('Obey') Chief Modeler So. Fl. Water Management District

sfwmd.gov

- Global Mean Sea Level
- Regional Sea Levels
- Sea Level Extremes (time permitting!)

Sources of Sea Level Rise (Global)

Global Average Sea Level Rise

Data sources:

Roundloo

- CSIRO (Commonwealth Scientific and Industrial Research Organisation). 2009. Sea level rise. Accessed November 2009. http://www.cmar.csiro.au/sealevel.

- University of Colorado at Boulder. 2009. Sea level change: 2009 release #2. http://sealevel.colorado.edu.

HYDROLOG

For more information, visit U.S. EPA's "Climate Change Indicators in the United States" at www.epa.gov/climatechange/science/indicators. Increase in the rate to > 3 mm/yr is of significant concern for coastal regions

& ENVIRONMENTAL SYSTEMS MODELIN

More closer to home: Projections for South Florida

Recent Global Mean Sea Level Projections

- Update to USACE guidance
- Sea Level Rise projections from IPCC Assessment Report V (AR5)
- NOAA scenario projections (NOAA 2012) developed NCA, 2014
- National Research Council (NRC 2012) projections for West coast of the United States
- Sea Level Rise projections issued for state-level planning. These include the states of Maryland, Massachusetts, and New York
- Probabilistic Projections that have become available recently in the literature (Kopp et. al. 2014; Jevrejeva et al. 2014)

IPCC (AR5) GMSL Projections (m)

Year	RCP2.6	RCP8.5
2030	0.13 [0.09–0.16]	0.13 [0.10–0.16]
2060	0.26 [0.18–0.34]	0.33 [0.24–0.42]
2100	0.43 [0.28–0.60]	0.73 [0.53–0.97]

"The IPCC's global mean sea-level scenarios do not necessarily provide the right information for coastal decision-making and risk management"

Hinkel et al., (2015), Nature Climate Change

Past and Projected Changes in Global Sea Level (NCA 2014 report)

Comparison of GMSL Projections

Comparison (cont.)

Sea Level Rise rates in the US

HYDROLOGIC & ENVIRONMENTAL SYSTEMS HODELING

Sea Level Rise is not uniform (why?)

Source of Regional Variation in Sea Level Relative to Land

- Land subsidence or uplift, Post Glacial Rebound
- Variations in Ocean Currents (e.g. Gulf stream)
- Gravitational and rotational effects of land ice redistribution (more complex)

NVIRONMENTAL SYSTEM

HYDROLOG

mondore

Combining Components of Sea Level Rise

undane

*As suggested in Nicholls et al., 2011

Dynamic Sea Level Adjustment

Gravitational and earth rotational effect of ice mass losses

Predicting future extreme sea levels

Extreme value modeling at a single site

Regional Frequency Analysis (use data at multiple locations)

For South Florida water Management District For South Florida Sea Level Rise is a bigger concern in the near future

Extra slides

Potential options for scenarios

Concept of Return Period in Extremes: Paradigm Shift ("Nonstationarity")

Return Period Change – A new paradigm for floods and sea level rise

Key West : Return Period Curve

Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events

 $T = E[X] = \mathbf{1} + \sum_{t=1}^{n} \prod_{t=1}^{n} (\mathbf{1} - p_t)$

Jose D. Salas, M.ASCE1; and Jayantha Obeysekera, M.ASCE2

Quantifying the Uncertainty of Design Floods under Nonstationary Conditions

Jayantha Obeysekera, M.ASCE¹; and Jose D. Salas, M.ASCE²

Why should Arctic and Antarctic Regions Matter to us?

(~ 2 million sq.km.)

Glaciers retreating

Rising Seas – Around Florida

- Relative Sea Level (height above a local datum) depends on:
 - Global Mean Sea Level
 - Vertical Land Movement (uplift/subsidence)
 - Regional Variability

Global SLR Projections for 2100-Considerably spread

